Curbing Illicit Financial Flows from Resource-rich Developing Countries: Improving Natural Resource Governance to Finance the SDGs

Abnormal Pricing in International Commodity Trading: Evidence from Ghana

Version: June 2020

Ama A. Ahene-Codjoe
University of Ghana, Legon

Angela Alu
University of Ghana, Legon

Rahul Mehrotra
Graduate Institute of International and Development Studies, Geneva

© The Authors. All rights reserved. For more details, visit the project website: https://curbing-iff.org/
This project is funded through the Swiss Programme for Research on Global Issues for Development (www.r4d.ch) by the Swiss Agency for Development and Cooperation (SDC) and the Swiss National Science Foundation (SNSF).
Abnormal Pricing in International Commodity Trading: Evidence from Ghana

Version: June 2020

Ama A. Ahene-Codjoe*, Angela A. Alu* and Rahul Mehrotra§

ABSTRACT
Mispricing of international trade in natural resources contributes to significant tax base erosion from commodity-dependent developing countries. However, existing evidence and empirical methodologies to estimate the magnitude of this phenomenon remain limited. In this paper, we apply an interdisciplinary approach motivated by legal rules for trade valuation and statistical price-filter methods informed by expert interviews to estimate the magnitude of abnormal pricing in gold and cocoa exports from Ghana i.e. exports valued outside an arm’s length price range that indicates fair market values. Using transaction-level microdata from Ghana Customs, our results indicate that undervalued exports for gold equalled 11% of its total exports between 2011 and 2017. Similarly, we estimate that 1.0% of total cocoa beans and 7.2% of cocoa paste exported within the same period were undervalued. Overall, these findings indicate significant tax base erosion through trade mispricing from Ghana.

JEL classification: F18 – Trade and Environment, O13 – Agriculture, Natural Resources; Energy; Environment; Other Primary Products, Q17 – Agriculture in International Trade, Q01 – Sustainable Development

*University of Ghana, Legon
§Graduate Institute of International and Development Studies, Geneva, Switzerland

Corresponding author: Ama A. Ahene-Codjoe, Email: asantewah@gmail.com; amaahene-codjoe@ug.edu.gh. Address: Department of Agricultural Economics and Agribusiness, SOA, CBAS, University of Ghana, Legon.
Acknowledgements: The authors acknowledge financial support through grant 400340_169564 by the Swiss Programme for Research on Global Issues for Development (www.r4d.ch) jointly funded by the Swiss National Science Foundation and Swiss Agency for Development and Cooperation. We are grateful to Fred Mawunyo Dzanku and Gilles Carbonnier for useful discussions. Thanks to seminar and conference participants at the Institute of Statistical, Social and Economic Research (ISSER), University of Ghana; Graduate Institute of International and Development Studies, Geneva; Centre for Study of African Economies (CSAE) and Addis Ababa University, Ethiopia. This project is grateful for the insights and feedback received from the Ghana Revenue Authority, Minerals Commission of Ghana, Ghana Chamber of Mines, Precious Minerals Marketing Company, Bank of Ghana and Ghana Cocoa Board. All remaining errors are our own responsibility.
1. INTRODUCTION

Trade mispricing arises when one or both trading partners deliberately misreport the value, quantity or nature of goods or services in a commercial transaction. This phenomenon is driven by tax-motivated profit shifting, off-shoring of financial assets and evasion of customs duties or restrictions on particular products or countries. These practices represent a significant economic and regulatory challenge, especially for natural resource-rich, developing countries (Beer et al, 2018; Carbonnier & Mehrotra, 2018; Crivelli et al, 2015). Capital flight through international trade erodes the tax base of developing countries where tax revenue, as a proportion of economic activity, remains significantly below potential. Resource-rich, developing countries that rely on revenue from their natural resource sector are particularly susceptible to commodity-trade mispricing driven by limited regulatory capacity and economic incentives of multinational actors (Guo, 2013; Mascagni et al., 2014; OECD, 2017).

Existing global estimates indicate that trade mispricing from developing countries could potentially equal USD 1 trillion annually (Global Financial Integrity, 2017). For developing countries in Africa, the Report of the High-Level Panel on Illicit Financial Flows from Africa estimated that Africa loses approximately USD 50 billion annually through trade misinvoicing (United Nations Economic Commission for Africa, 2015). While the underlying aggregate trade statistics and empirical methods have been shown to be unreliable for this analysis, this limited evidence has nonetheless triggered a significant push by national governments and international policy organizations to analyze the magnitude and channels for trade-related tax base erosion (Beer et al., 2018; Carbonnier & Mehrotra, 2018; Nitsch, 2016; OECD, 2014).

In this paper, we develop a robust, empirical methodology for estimating the magnitude of abnormal pricing in commodity exports motivated by legal rules of customs valuation and transfer pricing analysis. Abnormal pricing is defined as the magnitude of trade valued outside an assumed arm’s length price range which represents fair market value between unrelated buyers and sellers and is considered a reliable indicator for trade mispricing risks (Hong & Pak, 2017; World Customs Organization, 2018). Our baseline empirical approach, therefore, compares the valuation of transaction-level trade

1 According to Modica, Laudage, & Harding (2018), tax revenue-to-gross domestic product ratios remain significantly lower in Africa (between 10.8 to 30.3%) and Latin America (between 12.4 to 38.6%), compared to OECD countries (range from 16.2 to 45.9%).
microdata with an appropriate market benchmark calculated using free-market prices adjusted for relevant product and market-specific factors identified by traders and regulators.

This methodology is motivated by the World Trade Organization’s Transaction Value methods for customs valuation, and the Comparable Uncontrolled Price (CUP) method for transfer pricing analysis of trade between related firms (Platform for Collaboration on Tax, 2017; United Nations, 2017). These methods recommend the use of quoted, free-market prices as a starting point for identifying arm’s length prices, subject to reasonable comparability adjustments. We define the arm’s length price range for our selected commodities based on their benchmark prices quoted by commodities exchanges, product characteristics, transportation costs and other relevant commodity-specific factors driving normal variation in observed prices, as indicated by additional data sources and fact-intensive interviews with commodity traders and regulators.

Furthermore, our analysis also considers commodities which are traded without reference to a unique benchmark price of which we are no longer able to estimate an arm’s length price range based on product-specific factors. In this case, we apply a more limited approach in terms of using the interquartile range (IQR) of the observed prices to define the arm’s length price range. The OECD Transfer Pricing Guidelines recommend using the interquartile range. Other percentiles can as well be used to help enhance the reliability of any transfer pricing analysis (paragraph 3.57, OECD, 2017). Since the IQR is calculated endogenously using the observed distribution of export prices, this method directly assumes the presence of under and over-valuation in the trade statistics. However, it provides useful insights from a risk analysis perspective by identifying exporters and trade partners who consistently appear in the extreme tails of the products’ observed price distribution (Zdanowicz et al., 1999; Pak et al., 2003; De Boyrie et al., 2005; Hong & Pak, 2017).

2 The use of prices from commodities exchanges for transfer pricing analysis is also referred to as the ‘sixth method’ in some countries. This is distinct from Comparable Uncontrolled Prices (CUP) method which relies on data from comparable transactions between related and unrelated parties. See Section 2.4.2, United Nations (2017) for a detailed discussion of the ‘sixth method.’

3 Our empirical approach is distinct from comprehensive case-by-case audits which are based on accurately delineating each transaction based on a fact-intensive transactional and functional analysis on a case-by-case basis. Case-specific transactional and functional analysis may include the specific contractual terms of the individual transaction; the functions performed by each of the parties to the transaction, their account assets used and risks assumed; the individual characteristics of the transacted good; the specific market conditions in which the parties operate, including their relative competitive position; and the business strategies pursued by the parties, etc. For the list of criteria used to delineate the economically relevant characteristics for transfer pricing analysis, see: Chapter 1-D1, OECD (2017).
For our analysis which spans multiple years (2011-17), we introduce a methodological innovation compared to previous studies by calculating the interquartile range of unit prices (USD per kilogram) for each product using a rolling window of the preceding 365 days. The price distribution accordingly updates on a daily basis and takes into account the pricing dynamics over the previous year. All transactions valued in the top and bottom quartile of this rolling-window distribution are designated to be abnormally valued.

We focus our analysis on the case of gold doré and cocoa exports from Ghana—a resource-rich, developing country—which is the leading African producer of gold and the world’s second largest producer of cocoa beans (Njini 2019; Peprah, 2019). However, its tax revenue collections remain low as the ratio of tax revenue to gross domestic product (including natural resources and oil sector revenue) equals only 17.6% (Bank of Ghana, 2018). Trade mispricing and abusive transfer pricing by multinational firms are argued to be major contributing factors in driving tax base erosion (Carbonnier & Mehrotra, 2018). Our analysis of the commodity value chains indicates that the centralized and regulated trade in cocoa beans is exposed to fewer IFF risks, relative to the more decentralized trade in gold doré and cocoa paste. Interviews with commodity traders and regulators help us identify the main risks for trade mispricing which include: 1) transfer pricing risks due to the nature of ownership of the firms operating in the sector; 2) the presence of artisanal, small-scale firms in the sector; 3) inadequate regulatory infrastructure for verifying customs valuation of exports; and 4) transit trade from neighbouring countries.

Our main empirical findings are as follows. Gold doré exports from Ghana incorporate a combination of pure gold, silver and other impurities (lead, arsenic and so on) and their composition can vary depending on the source mine. Therefore, we first match the transaction-level export data with mine-level information on the gold and silver content in their doré production. Next, we identify the London Bullion Market Association (LBMA) daily spot prices for 99.9% pure, refined gold and silver as the relevant benchmark price for Ghanaian exports. Combining the mine-level purity information with the commodity exchange prices for gold and silver allows us to estimate the relevant benchmark price for gold doré exports from Ghana. Finally, we survey commodity experts to estimate variance in contractual pricing terms under normal business conditions to estimate the arm’s length price range.

This corresponds with the experience of other developing countries such as Cote d'Ivoire and Gabon where tax to GDP ratios remain at low levels, between 10% and 20%, compared to above 30% for OECD economies (Mascagni et al., 2014).
Our results indicate that Ghanaian exports are undervalued by approximately 11% of the total value of gold exported (USD 35.6 billion). The top five trading partners with the highest magnitude of undervalued gold exports are India (USD 2.0 billion), South Africa (USD 659.3 million), United Arab Emirates (USD 457.7 million), Switzerland (USD 343.4 million) and Portugal (USD 133.5 million). These, respectively, constitute approximately 5.5%, 1.9%, 1.3%, 1.0% and 0.4% of the total value of gold exported. The total estimated tax base erosion from Ghana due to the undervaluation of gold exports is USD 957.3 million.\(^5\)

Next, we analyse the case of cocoa beans exports from Ghana. This predominantly comprises fermented beans which are of superior quality. Based on interviews with Cocoa Marketing Company (CMC) experts, we first identify that the benchmark price for these exports is the London International Financial Futures and Options Exchange (LIFFE) prices.\(^6\) Next, we trace information on the product-specific price premiums due to various certifications and account for transportation costs, which are normally included in reported Customs valuation, as well as expected variance in pricing terms under normal business conditions which allows us to estimate the arm’s length price range. Our results indicate that Ghanaian cocoa beans exports are undervalued by USD 126.6 million which represents 1.0% of the total export value of USD 12.6 billion between 2011 and 2017. The top five countries that undervalued the cocoa beans exported from Ghana are Estonia (USD 45.7 million), The Netherlands (USD 14.7 million), Germany (USD 9.7 million), China (USD 9.5 million) and Belgium (USD 8.8 million). Their corresponding percentage share of total cocoa beans exports are 0.4%, 0.1%, 0.08%, 0.08% and 0.07%. Tax revenue loss from the estimated magnitude of undervalued imports equals USD 31.6 million.

Finally, we use the interquartile range price filter to estimate the arm’s length price range for cocoa paste exports due to the absence of accurate benchmark prices and comparability criteria. Our results indicate that 7.2% of the total export of cocoa paste (USD 1.8 billion) was undervalued i.e. found below the 25\(^{th}\) percentile of the per unit price distribution of the product. Despite the limited nature of this methodology, the relatively high undervaluation of cocoa paste exports represents a significant risk for illicit outflows via transfer mispricing due to the presence of many multinational companies

\(^5\) Tax base erosion, here defined as loss of revenue from corporate income tax, is estimated by multiplying the undervalued amount of each commodity under-study by Ghana’s corporate tax rate of 25%.

\(^6\) Ghana’s cocoa is mainly sold on the futures market. These sales are used as collateral for the syndicated loan the state takes to finance the purchases of cocoa beans from farmers through the Licensed Buying Companies (Personal communication, Cocoa Marketing Company, 2019).
(MNCs) operating in this sector. The top five countries that undervalued cocoa paste from Ghana are Spain (USD 46.2 million), Bulgaria (USD 36.9 million), The Netherlands (USD 13.5 million), Turkey (USD 5.4 million) and Russia (USD 3.3 million); with percentage share of total exports as 2.5%, 2.0%, 0.7%, 0.3% and 0.2% respectively. The total tax base erosion due to the overall undervaluation estimated is USD 32.6 million.

This paper makes some significant contributions to our limited, existing knowledge on trade-based IFFs and research methodologies. Firstly, we contribute a novel, data-intensive and interdisciplinary approach for establishing the arm’s length price range for traded commodities. In the few previous studies which have used price filter analyses, arbitrary criteria are used to set arm’s length price range. Notable studies in this research area include Hong et al. (2014) who used the free-market price filter approach to assess abnormal pricing for the US banana trade with Latin American and Caribbean countries. By comparison, our approach incorporates insights from extensive qualitative research interviews with commodity experts and regulators in Ghana.

Secondly, we contribute new evidence based on administrative microdata to analyse the possible tax revenue losses due to abnormal pricing which could be indicative of the magnitude of IFFs in a country of interest. In recent years, the policy focus on IFFs and tax base erosion has increased across all developing countries, especially in Ghana. With the incumbent government’s aim of steering Ghana out of an aid-dependency era to one that is dependent on its internal resources, there is, thus the need to examine the fiscal systems in place to prescribe appropriate policies to reduce IFFs in Ghana.7 Indeed, it has been globally acknowledged that emphasis has to be laid on the need to build strong domestic fiscal and financial systems as well as improve on domestic revenue mobilisation for financing the development agenda of African countries in a sustainable manner (African Economic Outlook, 2010; Andersson & Lazuka, 2019). Low to middle income countries do not only have to face the challenges of IFFs, but also deal with officials who are usually not equipped with the requisite skills to collect all the needed taxes as well as multinational companies that use sophisticated tax measures to evade taxes or negotiate deals that allow them to pay lower tax rates (Readhead et al., 2018).

7 This government is led by President Nana Akufo-Addo who launched the “Ghana Beyond Aid” agenda.
The rest of the paper is organised as follows. Section 2 provides an overview of the natural resource sector in Ghana, presenting the value chains and the risks for IFFs in the specified commodities while section 3 is devoted to the empirical methodology the paper used. The data sources are outlined in section 4. This is followed by section 5 which reports the estimates of abnormal pricing. Section 6 presents the conclusion and recommendations.

2. GOLD AND COCOA SECTORS IN GHANA

This paper employs mixed research methods. Specifically, we use qualitative research involving expert interviews to understand and identify the risks and drivers for trade mispricing in the gold and cocoa sectors, triangulate relevant data sources and existing analyses as well as build the statistical methodology used to estimate abnormal pricing. The combination of quantitative and qualitative methods allows for more enhanced insights into the research problems and questions than using one of the methods independently (Creswell, 2012).

This section describes our qualitative research methodology before presenting the resulting analysis on the main risks and economic incentives for trade mispricing. Our research focused on the following main categories: 1) transfer pricing risks due to the nature of ownership of the firms operating in the sector; 2) the presence of artisanal, small-scale and informal firms in the sector; 3) regulatory infrastructure for verifying export valuation; and 4) transit trade from neighbouring countries. Overall, we determined significantly fewer risks for trade mispricing in the centralised cocoa beans sector, in comparison to the decentralised cocoa paste and gold sectors.

2.1. Qualitative Research Methodology

The objective of our qualitative research is to acquire and analyse expert insights, existing research and new data on the risks and economic incentives for transfer mispricing in the gold and cocoa sectors in Ghana. Data was collected through desktop research and semi-structured interviews with a sample of experts at relevant private and public sector institutions. Purposive sampling, described by Etikan, Musa and Alkassim (2016) as a sampling technique that is appropriate when interviewees are chosen based on their expertise in a particular area, was used.

Thus, the institutions and interviewees were chosen based on their specialised roles in the gold and cocoa sectors in Ghana. They included private sector trade associations and government organisations responsible for natural resource governance, international trade governance as well as tax and revenue
authorities. Expert interviews were appropriate for the research because of the technical nature of the information required to support our analyses of trade mispricing risks and magnitudes. Twenty-four people were interviewed in total. The interviewees were mainly of senior management level. Most of the interviews were conducted face to face while we also conducted workshops to present aggregated insights for critical feedback. Each organisation was visited, at least, twice on average.

Extensive supplementary desktop research was used to identify existing research studies and data to guide our interviews and statistical analyses. Data for the desktop research was obtained from websites of the institutions identified and from their annual reports where available online. Journal articles and existing research relating to keywords such as value chain analysis of commodities, trade mispricing and international trade were also utilised.

For the gold sector, the institutions contacted were Minerals Commission (the regulators), Ghana Chamber of Mines (the private sector institution in charge of large scale mines) and Precious Minerals Marketing Company (PMMC) (the national assayer). Additionally, personnel of Customs Division of Ghana Revenue Authority, Ghana Extractive Industries Transparency Initiative (GHEITI) and ISODEC were interviewed. For the cocoa sector, the main institutions contacted were COCOBOD, Cocoa Marketing Company (CMC) and Ghana Export Promotion Authority (GEPA).

Finally, we also identified the following institutions with overall charge of natural resource sector governance in Ghana: Bank of Ghana, Customs Division of Ghana Revenue Authority and Ghana Investment Promotion Centre (GIPC). Out of the institutions contacted, there was an over 90% positive response. Notably, we were unable to interview the Transfer Pricing Unit of Ghana Revenue Authority and representatives of individual mining companies within the gold sector. Within the cocoa sector, we were unable to interview Ghana Free Zones Authority and individual cocoa paste processing companies. Table 1 shows the list of institutions visited for information and validation.
Table 1: List of Institutions Contacted

<table>
<thead>
<tr>
<th>Cocoa Beans and Cocoa Paste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role of Institution</td>
</tr>
<tr>
<td>Production</td>
</tr>
<tr>
<td>Transportation</td>
</tr>
<tr>
<td>Export</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role of Institution</td>
</tr>
<tr>
<td>Regulator</td>
</tr>
<tr>
<td>Private Sector Organisation</td>
</tr>
<tr>
<td>Assaying/Valuation</td>
</tr>
<tr>
<td>Civil Society Organisations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Resource Sector Governance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of Institution</td>
</tr>
<tr>
<td>Regulator/Tax Authority</td>
</tr>
<tr>
<td>Regulator/Central Bank</td>
</tr>
<tr>
<td>Business Promotion</td>
</tr>
</tbody>
</table>

Data Source: Expert Interviews 2018, 2019

2.2. Gold Sector

Gold is the most important export commodity for Ghana, currently accounting for 49% of the country's total exports by value (Observatory of Economic Complexity (OEC), 2019). In 2017, gold accounted for 96.4% of total earnings from mineral exports from Ghana (Minerals Commission, 2018). In 2018, Ghana became the largest producer in Africa and extracted approximately 4.8 million ounces of gold, which surpassed the 4.2 million ounces produced by South Africa (Whitehouse, 2019). According to the Ghana Chamber of Mines 2018 report, the top four mines in Ghana in terms of production and revenue outturns were Goldfields Ghana Limited, Newmont Ghana Gold Limited-

The mining sector is the largest contributor to Ghana’s economy (Minerals Commission, 2018). Fiscal payments attributable to the mining sector amounted to GH¢ 2.36 billion in 2018 (Ghana Chamber of Mines, 2019). Contributions from gold mining to public finances are observed via general taxes on profit and labour borne by all companies as well as specific taxes such as mining royalties, license fees, property rates payments and export duties (Minerals Commission, 2018).

The risks for trade mispricing in Ghana’s gold sector are as follows:

1. **Transfer pricing risks arising from multinational firms’ international operations:** Many prominent mining companies in Ghana are affiliates of multinational firms with their headquarters based outside Ghana and several other international affiliates across different tax and legal jurisdictions (Oppong, 2013). This leads to significant economic incentives for transfer mispricing and tax optimization using the channels of intra-firm trade and financial transfers. Readhead (2016) argues that the contribution of the extractive sector to Ghana’s economic growth could be much higher but for the tax avoidance by the companies operating in the sector through transfer mispricing, trade mispricing and thin capitalization. MNCs operating in the sector may have an incentive to under-declare their exports in order to reduce their tax liability to the state. This is because the revenue the state obtains from the sector is mainly through corporate and income taxes as well as royalties and withholding tax (Minerals Commission, 2018; Personal Communications, A. Tawiah; Aryee, 2018).

2. **Artisanal, small-scale and informal firms:** Artisanal, small-scale and informal mining in Ghana is characterised by labour-intensive local production of gold ore and doré bars by small mining concession owners (CSSM, 2009). Gold mining in this sector is allowed by individuals, small groups (of less than nine individuals) or a co-operative society with ten or more members (Parliament of Ghana, 1989). According to the Minerals and Mining Act of Ghana (Act 703), small scale mining is a prerogative of Ghanaian nationals who popularly refer to the sector as “galamsey.” However, inadequate availability of domestic capital and technological support incentivizes foreign businessmen.

8 An adulteration of the English phrase ‘gather them and sell.’
and firms to capture small-scale mining concession sites through local frontmen. These foreign
stakeholders' involvement can extend beyond provision of technological support to the complete
operation of a mining site (Hausermann & Ferring, 2018). This sector is difficult to regulate because
of its small-scale, geographically-dispersed and informal nature involving multiple middlemen.
Furthermore, licensed gold exporters in Ghana are permitted to purchase gold from both licensed and
non-licensed gold miners. This situation allows intermediate buyers and other persons to export
undervalued and/or misreported gold doré bars and engage in trade-based money laundering (Hunter
2020; Personal Communications, K. Opare-Hammond).

3. Regulatory infrastructure for export valuation:
Before export, gold doré bars have to be tested or assayed to ascertain the purity levels of its contents.
Large mining companies usually conduct their own assaying or use international pre-shipment
inspection firms to independently certify the contents in each shipment. Dedicated customs officials
are usually present during the stage where gold doré bars are fabricated for export, however, they are
neither present nor qualified to determine how the gold is assayed.

The verification of the assay values is only conducted at a foreign refinery after the gold has been
exported (Personal Communications, C. Nyarko). Any discrepancies in value noticed are likely to only
be reported to the mining company and not to the state. These could potentially cause loss of revenue
to the state if the company in question has under-declared the values of the gold doré bars exported.
Furthermore, artisanal, small-scale and informal mining firms lacking their own assaying infrastructure
are required to send their gold to a state-owned enterprise, Precious Minerals Marketing Company
(PMMC), for assaying before shipment. However, the coverage of these assaying infrastructure
remained limited until 2016 when a new legal regime was established in response to this loophole in
gold exports valuation. Under the new regulation, both small and large-scale mining companies are
now required to assay their gold shipments with the government regulator, PMMC. Accordingly, a
modern national assay laboratory has been constructed and equipped with trained personnel (Minerals
Commission, 2018; Personal communications, K. Opare-Hammond).

Pursuant to Regulation (3) of the Minerals and Mining General Regulation 2012 (LI 2173).
4. Transit trade from neighbouring countries: Trade flows can be categorized as exports, imports, re-exports and transit (Bensassi & Jarreau, 2019). The government of Ghana permits gold produced in neighboring countries to be brought into Ghana for assaying, documentation and onward shipment as transit gold. However, this introduces incentives for local actors to corrupt regulators and combine unrefined gold from different sources and misreport its true value and origin before shipping abroad (Rahman, 2018). The Head of Tax Policy Unit at the Ministry of Finance reported that Ghana Revenue Authority (GRA) has lost an accumulated revenue of GH¢4.5 billion over the past five years as a result of infractions by traders, importers and governmental agencies (Ocloo, 2018). The government of Ghana lost GH¢2 billion in revenue in 2018 through non-observance of rules governing transit trade and the probable complicity and collusion of Customs officials (Sarpong, 2019).

2.3. Cocoa Sector
Ghana is the world’s second largest producer of cocoa beans. The export of cocoa beans contributes approximately a quarter of the overall export earnings (Peprah, 2019). The sector employs almost three million farmers, provides business for service providers via haulage, warehousing, insurance etc., and contributes to formal education through scholarships to mainly wards of farmers and the needy in cocoa farming communities. Cocoa is a primary source of livelihood to many rural communities in the southern part of the country where it is largely grown. This sector accounted for approximately 2.3% of Ghana’s annual gross domestic product and 9.9% of annual agricultural output between 2010 and 2017.

Cocoa is by far the most important agricultural export commodity, contributing about 80.7% of average agricultural export earnings between 2014 and 2017 (ISSER, 2018). Contrary to the liberalised gold production sector, the Government of Ghana (GoG) plays a major role in the partly liberalised cocoa sector. The Ghana Cocoa Board (COCOBOD) regulates the sector with keen interest due to the socioeconomic importance of the commodity. About 70% – 80% of the cocoa produced (mainly the bigger beans from the main crop for the year) is exported. The rest of the beans (smaller beans) are mostly sold to local cocoa processing companies to make cocoa products such as cocoa paste, liquor, powder, cocoa husks and other cocoa waste for export. The cocoa paste sector is relatively decentralised with both the state-owned Cocoa Processing Company and multiple multinational firms present.

We identified the following risks for trade mispricing in this sector:
1. **Transfer pricing risks due to multinational firms’ international trade operations:** Transfer mispricing is not a significant risk in Ghana’s cocoa beans sector because the sector is dominated by COCOBOD on behalf of the government of Ghana. State-owned enterprises manage operations at every level of cocoa beans production. Prominent actors include Cocoa Research and Institute of Ghana (CRIG) which is in charge of agricultural research, Seed Production Division (SPD) which supplies seeds to farmers, Community Health and Extension Division (CHED) which provides support services for farmers, Quality Control Division (QCD) responsible for certifying the value of cocoa beans and most relevant for our analysis, Cocoa Marketing Company (CMC), the sole agency in charge of domestic and foreign sales of cocoa beans (David 2013; Personal Communications, COCOBOD Personnel). Since all but one of the subsidiaries of COCOBOD are state owned, it is taken that the bulk of proceeds from the export of cocoa revert to the state, thereby, creating a situation where transfer mispricing is not a significant issue (Bulir, 1998). Furthermore, since 2018, an audit committee has been inaugurated to oversee the management of financial resources of the Board in line with financial management regulations governing state institutions. This is in line with the Public Financial Management Act 2016 (Ampofo, 2018). However, the cocoa paste sector has a number of multinational companies (MNCs) that introduces some incentives for transfer mispricing to reduce tax liabilities in Ghana (Kwaramba et al., 2016).

2. **Artisanal, small-scale and informal firms:** Artisanal, small-scale and informal firms operating in the cocoa paste sector are difficult to regulate which may create some risks for tax avoidance and non-compliance within the sector, potentially causing Ghana to lose tax revenue. For example, although multinational companies operating in the sector are required to register with the Ghana Investment Promotion Council (GIPC), the same requirements are not applicable to artisanal, small-scale and informal firms (Personal Communications, M. Acheampong). In addition, the cocoa paste sector is partially regulated by COCOBOD and Ghana Export Promotion Authority (GEPA) (Personal Communications, E. Quao). This situation creates loopholes within the sector that firms may take advantage of to reduce their tax liability to the state, especially when there is a lack of effective cooperation and information sharing between the state institutions which have oversight over them.

10 The Licensed Buying Company (LBC) sector which buys cocoa beans from farmers is the only liberalised arm of COCOBOD.
3. Regulatory infrastructure for verifying export valuation: Both the cocoa beans and paste for export are verified by the Quality Control Division of COCOBOD before sale. The main crop cocoa beans are directly exported by CMC while the light crop cocoa beans sold to the cocoa paste companies are processed for export and domestic consumption (Personal Communications, CMC Personnel). About 90% of all processed cocoa is exported while the remaining 10% is used in the production of confectionery products (Ashitey, 2012). Although the cocoa paste products are sold by CMC, the oversight is not as stringent as it is for cocoa beans because the companies are not directly owned by COCOBOD. In addition, because many of the companies operating in the sector are multinationals, they are under the oversight of Ghana Free Zones Authority (Personal Communications, M. Acheampong; Personal Communications, F. Mate-Kodjo). This creates a situation where there are multiple organisations with oversight over the same sector, thereby, creating some loopholes within the sector. Thus, the multinational companies operating in the sector have the incentive and opportunity to reduce their tax liability to the state.

4. Transit trade from neighbouring countries: Similar to gold, transit trade of cocoa products from neighbouring countries presents a risk to the sale of cocoa beans. There have been several identified cases of smuggling of cocoa beans between Cote d'Ivoire and Ghana based on the price differentials between the two countries (Bulir, 1998). In 2017, Reuters reported that about 100,000 to 200,000 tonnes of cocoa beans were smuggled into Ghana from neighbouring Ivory Coast for export because of the higher prices Ghana was offering farmers (Kpodo, 2017). However, since 2018, the two countries have decided to announce their prices together to eliminate this phenomenon (Bruce, 2018).

3. ABNORMAL PRICING: METHODOLOGIES
This paper applies price filter methods for the estimation of abnormal pricing in international trade from Ghana. The method has two approaches: the free market price filter and interquartile range analyses. The free market price filter is used in the analysis of gold and cocoa beans that have reliable international market reference prices whilst the interquartile price range is used for cocoa paste because it lacks a unique market reference price as well as price rigidity in the observed data.
3.1. Free Market Price Filter

The free market price filter methodology is motivated by a simplified application of the Comparable Uncontrolled Price (CUP) method for establishing the arm’s length price range for commodities using commodities exchange prices, as per global transfer pricing guidelines (OECD, 2017; Platform for Collaboration on Tax, 2017; United Nations, 2017). This method relies on transaction level trade micro data on product type, quantity and unit value based on the Harmonized Commodity Description and Coding System (HS code) used internationally for classifying internationally traded products (Hong et al., 2014). This framework compares actual transaction level unit prices (price per kilogram) for a particular commodity (HS code) with an arm’s length price range defined using the contemporaneous free market price, plus or minus a reasonable filter to account for normal price volatility, commodity heterogeneity or purity, transportation costs and other relevant product-country level factors. Transactions which deviate significantly from this arm’s length price range are declared as abnormally valued.

The abnormally overvalued amount is estimated as the deviation from the upper bound of the arm’s length price range (P_{High}) and the abnormally undervalued amount as the deviation from the lower bound of the range (P_{Low}). Specifically, the mispriced amount for each transaction is calculated as follows:

\[
\begin{align*}
\text{Undervalued exports} &= \text{Quantity} \times \max(0, P_{\text{Low}} - P) \\
\text{Overvalued exports} &= \text{Quantity} \times \max(0, P - P_{\text{High}})
\end{align*}
\]

where:
- P = Declared price (unit value implied in the quantity and value in each declared export record)
- P_{Low} = Lower bound of the arm’s length price range
- P_{High} = Upper bound of the arm’s length price range

3.1.1. Arm’s Length Price Range for Gold Exports

Gold doré produced in Ghana ranges from between 67:33 and 100:0 gold – silver split (after accounting for a maximum of 5% of impurities like lead, copper and arsenic). Accordingly, we first calculate the relevant benchmark prices for the various proportions of gold and silver found in the gold doré bars produced in Ghana. Secondly, we assess the commodity-specific factors which result in further
variation of observed export values to deviate from the free market reference prices. Finally, we combine this information to estimate the arm’s length price range between \(P_{\text{Low}} \) and \(P_{\text{High}} \).

Benchmark Price for Gold: In order to establish the benchmark prices for different levels of gold-silver mix, we merge the firm names in our exports data from Ghana Revenue Authority with mine-level production information from Metal Focus Gold-Silver Dore Service database. However, not all the exporters can be matched to individual gold mines due to the presence of intermediate buyers and logistical firms in the GRA export data. In these cases, we conservatively use minimum and maximum gold purity levels observed across all gold mines to estimate the benchmark prices. Accordingly, we calculated the benchmarks as follows:

Case 1 - GRA exports data matched with mine-level gold-silver content:

\[
\text{Benchmark price} = (\text{price of gold} \times \text{gold content}) + (\text{price of silver} \times \text{silver content})
\]

Case 2 - GRA exports data which cannot be matched with mine-level gold-silver content. In this case, we calculate a minimum and maximum range for benchmark prices as follows:

\[
\text{Maximum benchmark price} = (\text{price of gold} \times \text{maximum gold content}) + (\text{price of silver} \times \text{minimum silver content})
\]

\[
\text{Minimum benchmark price} = (\text{price of silver} \times \text{maximum silver content}) + (\text{price of gold} \times \text{minimum gold content})
\]

Upper bound of arm’s length price range (\(P_{\text{High}} \)): Next, we estimate the arm’s length price range by first calculating the upper bound using the following commodity-specific factors based on estimations by interviewed gold sector experts:

1. **Transport, storage and insurance costs (negligible impact):** These costs are included in all export transactions, however, their impact on the total value of precious metals like gold

\[11\] In all cases, we adjust the gold and silver content to account for a maximum of 5% permitted impurities in the doré using the following adjustment: \((\text{gold/silver purity} \times 0.95)/100\).
are negligible i.e. maximum 2% of total value. This decreases further for larger volume transactions (Personal Communications, A. Tawiah; and Personal Communications).

2. Market conditions and contract terms (up to 10%): Export prices also fluctuate due to the terms of underlying contracts which include different types of transactions (spot and futures contracts). This also reflects differences in price bargaining power between trading companies. Favourable forward/futures sales can determine gains of the doré exports against spot prices used as benchmark. Also, Ghanaian Cedi – US Dollar exchange rates and prevailing interest rates affect export prices of gold from Ghana (Personal communications, C. Nyarko).

As a result, we conservatively use an estimate of 10% above the previously calculated benchmark prices as the upper bound of our arm’s length price range for gold:

\[
\text{Upper bound of arm's length price range} = (\text{Benchmark price} \times 1.10)
\]

Lower bound of arm’s length price range (P_{low}): Finally, we can estimate the lower bound of the arm’s length price range as follows:

1. Market conditions and contract terms (up to 10%): Same as above, contract types and market conditions also have a negative impact in terms of reducing the observed export prices below our calculated benchmark prices. Therefore, we conservatively assume the total downward impact of 10% to calculate the lower bound of the arm’s length price range as follows:

\[
\text{Lower bound of arm's length price range} = (\text{Benchmark price} \times 0.90)
\]

Declared export values falling above the upper bound arm’s length range indicate overvaluation while those below the lower bound arm’s length range indicate undervaluation of exported gold.

3.1.2. Arm’s Length Price Range for Cocoa Beans

Unlike gold, our empirical methodology for estimating abnormally priced cocoa beans exports does not require detailed information on different types or purity levels. This is because Ghana exports only Grade I and Grade II cocoa beans which are generally considered as high-quality beans, even above

12 This information was gathered from two gold exporting agencies and a conversation with a contact at a freight forwarding agency.
standards set by the international market, hence, attract premiums in addition to the international market reference prices (Quarmine et al., 2012; Abbott, 2013). In order to ensure maintenance of this internationally recognised high-quality cocoa beans standards set by COCOBOD, Cocoa Marketing Company (CMC), a subsidiary of COCOBOD, has (by law) been given the sole right to sell and export cocoa beans from Ghana as well as perform the take-over function within the internal marketing system.

The cocoa marketing procedure in Ghana is unique with its partly liberalised system where internal marketing undertaken by LBCs are privatised, albeit with strict oversight by CMC (a parastatal with keen government interest). COCOBOD/Government of Ghana show particular interest and control the marketing of cocoa beans because of the potential revenue increase to, foremost, finance syndicated loans (receivables-backed trade finance facility) taken by COCOBOD. The loans are used for purchasing cocoa beans from local farmers through LBCs and providing research and extension services to farmers as well as funds for the general administration of all the cocoa institutions. They are also used for rural community development in the country (Personal Communications, CMC Personnel). Furthermore, increased income of farming households improves rural livelihood and subsequently aids some developmental targets of the government. In effect, prompt payment of the loans ensures reliability and continuous subscription that translates into consistent cocoa beans production of prescribed quality and standards set by COCOBOD.

To ensure guaranteed funds for the next cocoa season’s business, CMC trades most of the main crops which they describe as relatively more stable in terms of yield as well as attract higher prices in the futures sales (Personal Communications, CMC/COCOBOD Personnel). Hence, COCOBOD’s presence at every stage of the cocoa value chain to ensure the required production size for the season. Also, to this end, COCOBOD, with support of Bank of Ghana, forecasts prices and exchange rates

13 This grading standard is set and enforced by COCOBOD. It indicates the physical quality of the cocoa beans in relation to moisture content, disease infestation, defectiveness of the beans, mouldiness, saltiness and the presence of foreign matter. Specifically, Grade I beans are well fermented with moisture content not higher than 7.5% and the maximum defect levels of beans allowed are mouldiness level (3%), saltiness (3%) and other defects (3%); while Grade II beans do not have more than 8.5% moisture content with maximum defect levels allowed are mouldiness level (4%), saltiness (8%) and other defects (6%). In addition to these indicators, COCOBOD ensures all cocoa bags contain cocoa beans of uniform size (Quarmine et al., 2012; Personal communications, CMC/COCOBOD personnel).

14 The take-over function involves CMC performing the final quality checks of cocoa beans for dryness, mouldiness, saltiness and other defects at their take-over centres, after quality checks and delivery by LBCs, before acceptance and warehousing for shipment.
to assess total revenue and industry costs to determine the annual producer price of cocoa in Ghana. The Producer Price Review Committee (PPRC) deliberates and decides on the producer price as well as shares of other stakeholders such COCOBOD, LBCs, haulers and GoG. The aim is to incentivise cocoa farmers to produce more with stable income (Laven and Boomsma, 2012; Vigneri and Lolavalli, 2018; and Bangmarigu and Artan, 2018). Basically, cocoa beans’ external marketing is based on volume and reliability because, usually, quality is given and already attracts a premium. Two seasonal produce of cocoa beans are exported — main and light crops — and the ability to make external sales depends on experience, intuition and timing on the futures’ market as well as a quest to secure enough sales to fund the syndicated loans.

Benchmark Price for Cocoa Beans exports: We use the London Futures Prices as our benchmark prices for the analysis of the abnormal pricing of cocoa beans. This is because export prices of the beans are negotiated as differentials based on these prices. The Intercontinental Exchange (ICE), London, particularly represents delivery in Northern Europe and serves as reference prices for West African cocoa; hence, CMC’s trading of cocoa beans, especially to foreign buyers, is based on these prices. In the agreement outlined, buyers and sellers present the futures contract as a reference price and then negotiations are undertaken in relation to differential premium or discount depending on quality, default and counterparty risks in delivering the quantities for which prices are fixed. Ghana’s institutional reputation with regard to quality and counterparty risk, for instance, allow for sales that are usually conducted six to 12 months (or sometimes 15 to 18 months) prior to delivery. The main reason for the futures sales is that the sales serve as collateral for the syndicated loans acquired to pay LBCs for their cocoa beans, provide research and extension services to farmers as well as funds for the general administration of all cocoa institutions in the country (Tröster et al., 2019; Personal Communications, CMC Personnel). Based on assumptions guided by our communications with experts in the industry and desktop research, an arm’s length price range is subsequently estimated by focusing on market conditions and contract types as well as transport and insurance costs. The upper and lower bounds arm’s length price ranges are set as follows:

Upper bound of arm’s length price range (\(P_{\text{High}}\)**): We use the following considerations to estimate **\(P_{\text{High}}\)** for cocoa beans exports from Ghana:

15 A committee made up of COCOBOD, government officials, representatives of LBCs and transport/haulers, the national cocoa farmers’ association, and chaired by the Ministry of Finance.
1. **Market conditions and contract terms:** With the peculiar cocoa supply chain in Ghana, varied sales strategies undertaken by the traders based on instinct with experience, plausible portions of estimated abnormal pricing are assumed to be a reflection of premiums earned as a result of a combination of an established guaranteed delivery of sold cocoa beans on time, quality of beans, market power and counterparty premium. For example, CMC/COCOBOD selects top-grade quality and size of cocoa beans for export that attract roughly 3 – 5% price premium on the world markets. Certifications such as Organic, Fairtrade, UTZ and traceability also attract price premium of 150 USD per tonne which is about 5.4% of the average value of the London’s Futures Prices for the period 2011 – 2017 (Gilbert, 2009 in Kolavalli and Vigneri, 2011; Dand, 2011). Some reasons given for the premiums include slightly higher-than-average fat content, low levels of debris that results in higher cocoa butter yields and low levels of bean defects that generate cocoa liquor flavour preferred by some end users (Kolavalli and Vigneri, 2011). Indeed, premiums have been known to go as high as 16.5% of the market reference (Personal Communications, CMC/COCOBOD Personnel; Stakeholder Meeting at COCOBOD).

2. **Transport, storage and insurance costs:** According to CMC, cocoa beans are sometimes exported with pre-financed shipments by COCOBOD upon customers’ request. On these occasions, the beans are exported under Cost, Insurance and Freight (CIF) terms, which usually cost around USD 100 per tonne or 10% of export value (Dand, 2011; Personal Communications, CMC/COCOBOD Personnel). Also, using the world market price in 1999, Pedersen (2001) estimated transport cost of cocoa exported from Tema to Rotterdam to be around 13% of the market price.

Overall, we conservatively use a 30% increase above the benchmark price (i.e the futures market reference prices) to set the upper bound for the arm’s length range beyond which export values are considered overvalued (abnormally overpriced).

Lower bound of arm’s length price range (P_{Low}):

Market conditions and contract terms: We deduce that based on market conditions and contract terms that fix majority of export values ahead of the season in forward sales, risks such as exchange rates, lower than expected estimated volumes due to crop failures and smuggling can lead to sales that fall short of the expected prices due to defaults (Tröster et al.,
2019). Also, CMC exports about 20 – 30% of cocoa beans at spot prices (mostly light crops of relatively small sizes (Quarmine et al., 2012)) that are subject to same risks, especially smuggling and speculations. Discounts due to non-delivery or default of the expected quality (which hardly occurs) and size can result in export values below the benchmark market reference prices.16 We, thus, similarly approximate 20% deviations from the benchmark to constitute the lower bound arm’s length price range. Consequently, cocoa beans export values falling below this lower bound are considered undervalued.

3.2 Interquartile Range Price Filter Analysis

The inter-quartile range price filter method assumes that values between the 25th and 75th percentile of the observed distribution of unit prices for a specific commodity denotes the arm’s length price range. Any transaction that falls above or below this price range is categorised as abnormally valued. Traditionally, this method relies on the inter-quartile range being calculated for each calendar year. However, in a methodological innovation from previous studies (for example, Hong and Pak, 2017), we implement a dynamic version of the previous method by updating our calculation of the inter-quartile range on a daily basis using the price distribution observed over the previous 365 days i.e. a 365-day rolling window estimate of the interquartile range. The main advantage is to make our definition of the arm’s length price range more responsive to pricing dynamics observed over the course of the year. For example, in the case of agricultural commodities, the observed trade prices may be affected by planting seasons, climactic variation and market conditions which do not directly correspond to calendar years used by previous studies to calculate the arm’s length price range.

Accordingly, any transaction value which exceeds the 75th percentile or fall below the 25th percentile of the observed price distribution is designated to be abnormally priced. The under or overvalued amounts for each transaction is then calculated as follows:

\[
\text{Undervalued amount} = \text{Quantity} \times \max(0, \text{LoQ} - \text{P})
\]

\[
\text{Overvalued amount} = \text{Quantity} \times \max(0, \text{P} - \text{UpQ})
\]

where:
\[
\text{P} = \text{Declared price (unit value implied in quantity and value in each trade record)}
\]
\[
\text{LoQ} = \text{Lower-quartile price calculated using price distribution over previous 365 days}
\]

16 According to Quarmine et al., 2012 cocoa beans from Ghana, on two occasions, have been rejected by Japanese and American markets due to chemical residues that exceeded the maximum requirements.
\(\text{UpQ} = \text{Upper-quartile price calculated using price distribution over previous 365 days} \)

It is relatively straightforward to observe that since the interquartile price range is endogenously estimated using the observed price distribution, this hypothesis will be rejected by design for a certain proportion of transactions. Therefore, these estimates of trade mispricing should be interpreted carefully and supplemented with further discussion regarding product, price and individual market characteristics. For example, contemporaneous political, economic or environmental shocks may play a key role in determining whether the observed transaction price falls within the interquartile price range during a given period.

3.2.1. Arm’s Length Price Range for Cocoa Paste

Due to the lack of commonly acknowledged market reference prices for cocoa paste exports from Ghana, the interquartile range method is used to calculate its abnormal estimates. Furthermore, we observe a high degree of export price rigidity in the cocoa paste exports data which suggests advance pricing agreements at constant prices between trading partners which do not respond to observed prices from relevant commodities exchanges. Therefore, we apply the rolling-interquartile range price filter method as described above to approximate the arm’s length price range for cocoa paste exports.

Upper bound of arm’s length price range \((P_{\text{High}}) \): We use the 75th percentile to set the \(P_{\text{High}} \) for cocoa paste exports from Ghana. Thus, export values that are found above the 75th percentile are estimated as the overvalued amount of cocoa paste.

Lower bound of arm’s length price range \((P_{\text{Low}}) \): Similarly, we set the 25th percentile as the \(P_{\text{Low}} \) for cocoa paste exports from Ghana. Calculated values below this boundary are declared as undervalued amount of cocoa paste.

4. DATA SOURCES

Ghana Revenue Authority’s Customs Division provided us with daily, transaction level gold and cocoa exports microdata for this analysis. This database covers all exports from 2011 – 2017 and includes all relevant information including transaction value, weight (net and gross, including packaging), detailed
description of the commodity type, tariff classification code as per the global Harmonized System for Classification (HS System), trading partners (importer and exporter names) and the receiving country.

For on gold, our analysis focuses on two main categories of exports from Ghana: gold bullion (7108.13.1000) and unwrought, non-monetary gold (7108.12.0000) corresponding to gold smelted into doré bars. This firm level transactions data show that Ghana exported gold worth USD 35.6 billion to 47 countries between 2011 and 2017.17 The top four destination countries of Ghana’s gold exports are South Africa, Switzerland, United Arab Emirates and India.

Similarly, Ghana Customs used a 10 – digit HS code to classify the nine types of cocoa exported within the study period. Two of these types — cocoa beans, superior quality raw beans (1801.00.1100) and cocoa paste, wholly or partly defatted (1803.20.0000) — are examined in this study. In the data, cocoa beans refer to superior quality raw beans. It is also known as well-fermented cocoa beans. The specific descriptions in the Ghana Customs data include main crop raw cocoa beans (abrabopa; knapa kooko; certified; traceable and UTZ certified) and light crop raw cocoa beans. These descriptions signify the various types of raw cocoa beans exported. For example, some of the cocoa exported are certified as organic (bought from farmers who do not use child labour in cocoa production and also from farmers’ associations that ensure sustainable production of cocoa). Ghana exported about 4.3 million tonnes of cocoa beans worth USD 12.6 billion over the study period. The top four destination countries of Ghana’s cocoa are The Netherlands, Malaysia, United States of America and Belgium.

Ghana Customs also describes cocoa paste as either wholly or partly defatted; it is generally made up of refined cocoa liquor, cocoa mass, unrefined cocoa nibs, non-deodorised filtered cocoa butter, fine alkalised cocoa liquor, coarse alkalised cocoa cake, natural coarse cocoa cake, defatted cocoa cake and cocoa powder. The value of processed cocoa paste exports from Ghana within the study period totalled USD 1.8 billion. The top four countries that bought some of these cocoa paste products are The Netherlands, France, Belgium and Switzerland. Table 2 gives the summary statistics of the three commodities used in our assessment of abnormal pricing in Ghana.

17 Upon cleaning the data to remove errors such as the listing of diamonds, gold dust, tar, soil samples, and silver as well as extremely large per unit prices outliers, 20,933 transaction level observations were left for the analysis; from an original 21,261 observations.
Table 2: Summary Statistics of Selected Commodities

<table>
<thead>
<tr>
<th>HS: 7108.13.1000 & 7108.12.0000</th>
<th>Gold</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactions</td>
<td>Mean</td>
<td>Standard Dev.</td>
<td>Max.</td>
<td>Min.</td>
<td></td>
</tr>
<tr>
<td>Quantity (kg)</td>
<td>20,933</td>
<td>49.1</td>
<td>265.8</td>
<td>30,646.0</td>
<td>0.03</td>
</tr>
<tr>
<td>Transaction value (USD)</td>
<td>20,933</td>
<td>1,699,228</td>
<td>3,373,144</td>
<td>46,200,000</td>
<td>135.0</td>
</tr>
<tr>
<td>Price per Kg (USD)</td>
<td>20,933</td>
<td>40,522.8</td>
<td>8,622.8</td>
<td>60,690.0</td>
<td>6.3</td>
</tr>
</tbody>
</table>

HS: 1801.00.1100 Cocoa Beans (Superior Quality Raw Beans)

<table>
<thead>
<tr>
<th>Transactions</th>
<th>Mean</th>
<th>Standard Dev.</th>
<th>Max.</th>
<th>Min.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity (kg)</td>
<td>13,210</td>
<td>323,435.2</td>
<td>508,272.7</td>
<td>23,100,000</td>
<td>646</td>
</tr>
<tr>
<td>Transaction value (USD)</td>
<td>13,210</td>
<td>954,661</td>
<td>1,415,084</td>
<td>19,100,000</td>
<td>2,485</td>
</tr>
<tr>
<td>Price per Kg (USD)</td>
<td>13,210</td>
<td>3.03</td>
<td>1.5</td>
<td>31.8</td>
<td>0.002</td>
</tr>
</tbody>
</table>

HS: 1803.20.0000 Cocoa Paste (Wholly or Partly Defatted)

<table>
<thead>
<tr>
<th>Transactions</th>
<th>Mean</th>
<th>Standard Dev.</th>
<th>Max.</th>
<th>Min.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity (kg)</td>
<td>5,889</td>
<td>90,340</td>
<td>86,875</td>
<td>1,400,000</td>
<td>19.0</td>
</tr>
<tr>
<td>Transaction value (USD)</td>
<td>5,889</td>
<td>309,551</td>
<td>315,601</td>
<td>3,019,378</td>
<td>20.0</td>
</tr>
<tr>
<td>Price per Kg (USD)</td>
<td>5,889</td>
<td>3.5</td>
<td>0.9</td>
<td>7.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Source: Ghana Revenue Authority – Customs Division

Daily market price data is from Thomson Reuters Datastream, a database of global financial markets and economic indicators. The commodity exchanges’ data used as free market reference prices for the analyses are: the London Bullion Market Association (LBMA) for Gold Bullion LBM (US dollars per troy ounce) with 99.5% to 99.9% purity levels and London International Financial Futures and Options Exchange (LIFFE) prices for the assessment of the raw cocoa beans (US Dollars per metric tonne).

4.3. Metal Focus Gold Doré Flows Service Database: 2019

This database provides mine-level information on historical, current and forecasted doré production (up to 2030) by company and country. It also contains information on current refining location, historic production costs, current mineral reserves and resources as well as the gold – silver split of doré production. This information covers 652 mining companies in 77 countries. Specifically, the database
has information on 16 mines in Ghana owned by Newmont Goldcorp Corporation, Golden Star Resources, Kinross Gold, Gold Fields, Perseus Mining, AngloGold Ashanti, BCM International, Asanko Gold/Gold Fields and Golden Star Resources. Except for Newmont Goldcorp Corporation and AngloGold Ashanti, all the mines listed are co-owned by the Government of Ghana (GoG).18

This study primarily used the gold – silver split information from this database for companies that exported gold doré within the study period. The gold – silver split recorded are 100 – 0%, 97 – 3%, 96 – 4%, 86 – 14%, 81 – 19% and 67 – 33% (Table 3).19 Since the data is merged on company level with the GRA dataset where companies have differing gold – silver splits from different mines, the lowest gold – silver split is used for the analysis of that company. Of the gold – silver split recorded, up to 5% constitutes impurities such as copper, lead and bismuth, which is permissible by refineries; and mines are paid based on the percentages of both the gold and silver in a doré (Metal Focus Report, 2019).

Table 3: Main Gold Mines in Ghana, Ownership and Gold – Silver Content in Production

<table>
<thead>
<tr>
<th>Mine Name</th>
<th>Mine Ownership</th>
<th>Gold:Silver Split (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahafo</td>
<td>Newmont Goldcorp Corporation</td>
<td>100:0</td>
</tr>
<tr>
<td>Akyem</td>
<td>Newmont Goldcorp Corporation</td>
<td>86:14</td>
</tr>
<tr>
<td>Bogoso</td>
<td>Golden Star Resources / Government of Ghana</td>
<td>100:0</td>
</tr>
<tr>
<td>Prestea</td>
<td>Golden Star Resources / Government of Ghana</td>
<td>100:0</td>
</tr>
<tr>
<td>Chirano</td>
<td>Kinross Gold Corporation / Government of Ghana</td>
<td>67:33</td>
</tr>
<tr>
<td>Damang</td>
<td>Gold Fields / Government of Ghana</td>
<td>97:3</td>
</tr>
<tr>
<td>Edikan</td>
<td>Perseus Mining / Government of Ghana</td>
<td>100:0</td>
</tr>
<tr>
<td>Iduapriem</td>
<td>AngloGold Ashanti</td>
<td>100:0</td>
</tr>
<tr>
<td>Obotan</td>
<td>Asanko Gold / Gold Fields / Government of Ghana</td>
<td>81:19</td>
</tr>
<tr>
<td>Tarkwa</td>
<td>Gold Fields / Government of Ghana</td>
<td>96:4</td>
</tr>
<tr>
<td>Wassa</td>
<td>Golden Star Resources / Government of Ghana</td>
<td>100:0</td>
</tr>
</tbody>
</table>

Source: Metal Focus Gold Doré Flows Services Database, 2019

18 The government owns 10% of each mining company.
19 Records from other sources have also shown that some mines, in rare cases, produce gold doré of purity levels as low as 50% (Personal Communications, C. Nyarko).
5. ESTIMATES OF ABNORMAL PRICING

We will now present the annual and total estimates of abnormal pricing for the selected gold and cocoa exports using the methodologies and data explained above. The analyses presented in this section are based on export trade between Ghana and various partners, hence, the abnormal price estimates are general rather than specific to a particular trading partner. Overall, our estimates show economically significant undervaluation of some of the commodities.

5.1. Gold (Semi-Manufactured) (HS Code: 7108.13.1000 & 7108.12.0000)

Table 4 gives the calculated annual and overall under and overvaluations of gold exported within the study period.

<table>
<thead>
<tr>
<th>Year</th>
<th>Free Market Price Filter: Minus 10% of Benchmark Prices* (USD, Million)</th>
<th>Free Market Price Filter: Plus 10% of Benchmark Prices* (USD, Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>222.8</td>
<td>2.0</td>
</tr>
<tr>
<td>2012</td>
<td>544.5</td>
<td>14.5</td>
</tr>
<tr>
<td>2013</td>
<td>514.7</td>
<td>23.1</td>
</tr>
<tr>
<td>2014</td>
<td>205.5</td>
<td>13.4</td>
</tr>
<tr>
<td>2015</td>
<td>78.9</td>
<td>7.4</td>
</tr>
<tr>
<td>2016</td>
<td>1,195.4</td>
<td>1.9</td>
</tr>
<tr>
<td>2017</td>
<td>1,067.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Mean</td>
<td>547.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Total</td>
<td>3,829.1</td>
<td>66.6</td>
</tr>
<tr>
<td>Observations</td>
<td>1,932</td>
<td>334</td>
</tr>
</tbody>
</table>

Data Source: Ghana Revenue Authority (GRA); and Metal Focus Limited

*The benchmark prices are estimated based on the heterogeneity nature of gold doré exported which are gold – silver splits; 100 - 0%, 96 – 4%, 86 – 14%, 81 – 19%, and 67 – 33%.

Notes: Gold is semi-manufactured; a combination of two export types mis-classified in the GRA data as gold bullion (HS: 7108.13.1000) and unwrought gold, non-monetary including gold plated with platinum (HS: 7108.12.0000). Free market reference price is the daily gold bullion price from London Bullion Market Association (LBMA) ($/t oz).

Estimates for abnormally undervalued exports: Using the lower bound of the arm’s length price range as described under sub-section 3.1.1, we estimate that USD 3.8 billion of exports are abnormally undervalued. This constitutes approximately 11% of the total value of gold exported (USD 35.6 billion). The top five destination countries of these undervalued gold exports are India (USD 2.0 billion), South Africa (USD 659.3 million), United Arab Emirates (USD 457.7 million), Switzerland
(USD 343.4 million) and Portugal (USD 133.5 million). Their respective percentage share of the total value of gold exported within the study period are approximately 5.5%, 1.9%, 1.3%, 1.0% and 0.4%. Finally, the total estimated tax base erosion from Ghana due to the undervaluation of gold exports is USD 957.3 million.

Estimates for abnormally overvalued exports: Similarly, using the upper bound arm’s length range, we estimate that total overvaluations of gold exports between 2011 and 2017 equal USD 66.6 million (Table 4). Relative to the total value of gold exports, overvaluation seems negligible; approximately 0.2%. Top five of the destination countries that overvalued Ghana’s gold doré exports are South Africa (USD 31.8 million), Switzerland (USD 22.7 million), The Netherlands (USD 9.7 million), United Arab Emirates (USD 1.4 million) and India (USD 0.8 million).

5.2. Cocoa Beans (HS Code: 1801.00.1100)

Table 5 gives the estimated magnitudes of undervaluation and overvaluation of cocoa beans for the period 2011 – 2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>Free Market Price Filter: Minus 20% (USD, Million)</th>
<th>Free Market Price Filter: Plus 30% (USD, Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>24.4</td>
<td>3.8</td>
</tr>
<tr>
<td>2012</td>
<td>8.5</td>
<td>7.9</td>
</tr>
<tr>
<td>2013</td>
<td>1.4</td>
<td>21.6</td>
</tr>
<tr>
<td>2014</td>
<td>57.4</td>
<td>12.0</td>
</tr>
<tr>
<td>2015</td>
<td>2.2</td>
<td>7.0</td>
</tr>
<tr>
<td>2016</td>
<td>9.0</td>
<td>47.0</td>
</tr>
<tr>
<td>2017</td>
<td>23.8</td>
<td>15.4</td>
</tr>
<tr>
<td>Mean</td>
<td>18.1</td>
<td>16.4</td>
</tr>
<tr>
<td>Total</td>
<td>126.6</td>
<td>114.7</td>
</tr>
<tr>
<td>Observations</td>
<td>285</td>
<td>326</td>
</tr>
</tbody>
</table>

Data Source: Ghana Revenue Authority (GRA)

Notes: Cocoa beans are superior quality raw beans (HS: 1801.00.1100). Free market price is the London Futures Price (US$/MT).
Estimates for abnormally undervalued exports: In spite of the unique marketing characteristics of Ghana cocoa beans exports, it is estimated that about USD 126.6 million worth of cocoa beans was undervalued between 2011 and 2017 (Table 5). This equals about 1.0% of the total value of cocoa beans exported (USD 12.6 billion) which appears to be a small proportion but equals an economically significant gross amount. The top five countries that undervalued the cocoa beans exported from Ghana are Estonia (USD 45.7 million), The Netherlands (USD 14.7 million), Germany (USD 9.7 million), China (USD 9.5 million) and Belgium (USD 8.8 million). Their corresponding percentage share of total cocoa beans exports are 0.4%, 0.1%, 0.08%, 0.08% and 0.07%. Although undervaluation in percentages appears small, revenue loss is not negligible. There is an estimated tax base erosion of USD 31.6 million.

Estimates for abnormally overvalued exports: The estimates of abnormally overvalued cocoa beans exports are quite similar to the undervaluation estimates. For example, the estimated overvalued amount of cocoa beans is USD 114.7 million or 0.9% of total exports over the entire study period (Table 5). The top five destination countries that overvalued cocoa beans from Ghana are Malaysia (USD 26.0 million), The Netherlands (USD 18.7 million), Brazil (USD 15.9 million), United States of America (USD 11.5 million) and Japan (USD 7.0 million).

5.3. Cocoa Paste (HS Code: 1803.20.0000)

The annual and total undervaluation and overvaluation estimates of cocoa paste are given in Table 6.

Estimates for abnormally undervalued exports: Our estimations indicate that the amount of undervalued cocoa paste is USD 130.5 million (or 7.2% of the total export value) between 2011 and 2017. Although endogenously determined, the interquartile range filter provides better abnormal pricing estimates where the lack of benchmark prices makes it unfeasible to estimate the arm’s length price range using commodity market prices. This undervaluation could be attributed to the different cocoa paste/mass products combined to generate the estimates (COCOBOD Personnel Feedback, Stakeholder Meeting, 2019).

Another reason is the high number of multinationals operating in the sector which increases risks for trade and transfer mispricing in the sector (Kwaramba et al., 2016). The top five countries that undervalued cocoa paste from Ghana are Spain (USD 46.2 million), Bulgaria (USD 36.9 million), The
Netherlands (USD 13.5 million), Turkey (USD 5.4 million) and Russia (USD 3.3 million); with percentage share of total exports as 2.5%, 2.0%, 0.7%, 0.3% and 0.2% respectively. The total tax base erosion due to the overall undervaluation estimated is USD 32.6 million.

Estimates for abnormally overvalued exports: Overvaluation of cocoa paste is approximately USD 59.1 million, constituting roughly 3.2% of the total value of cocoa paste exported (Table 6). The first five countries that overvalued the cocoa paste are the Netherlands (USD 13.2 million), Turkey (USD 8.3 million), Bulgaria (USD 5.9 million), United States of America (USD 4.6 million) and United Kingdom (USD 4.0 million).

<table>
<thead>
<tr>
<th>Year</th>
<th>Rolling Interquartile Range Filter: Below 25th pctle (USD, Million)</th>
<th>Rolling Interquartile Range Filter: Above 75th pctle (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2.7</td>
<td>0.2</td>
</tr>
<tr>
<td>2012</td>
<td>7.7</td>
<td>4.1</td>
</tr>
<tr>
<td>2013</td>
<td>11.8</td>
<td>4.5</td>
</tr>
<tr>
<td>2014</td>
<td>33.7</td>
<td>19.1</td>
</tr>
<tr>
<td>2015</td>
<td>24.9</td>
<td>14.9</td>
</tr>
<tr>
<td>2016</td>
<td>18.4</td>
<td>7.7</td>
</tr>
<tr>
<td>2017</td>
<td>31.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Mean</td>
<td>18.6</td>
<td>8.4</td>
</tr>
<tr>
<td>Total</td>
<td>130.5</td>
<td>59.1</td>
</tr>
<tr>
<td>Observations</td>
<td>1,452</td>
<td>1,169</td>
</tr>
</tbody>
</table>

Table 6: Undervalued and Overvalued Exports – Cocoa Paste (HS: 1803.20.0000)

Data Source: Ghana Revenue Authority (GRA)

Notes: Cocoa paste includes wholly and partly defatted (HS: 1803.20.0000). Rolling Interquartile range is calculated for unit prices (USD per kg) using transaction level data from GRA.

6. Conclusions and Policy Implications

As a resource-rich, developing country, Ghana expects to leverage the production and marketing of its natural resources for financing socio-economic development. However, trade mispricing can significantly erode the potential of its natural resource sector to contribute to development as it leads to tax base erosion from the economy. This study accordingly aims to provide novel evidence of
abnormal pricing of Ghana’s most economically significant exports (gold and cocoa) using a robust, interdisciplinary method involving statistical analysis informed by industry experts. We postulate that our estimates represent useful, new evidence to inform policymakers, especially, since these estimates rely on transaction level microdata rather than the aggregate trade statistics used in existing studies.

Overall, our findings confirm that commodity trade mispricing is an urgent concern for Ghana. Policymakers accordingly need to prioritize the establishment of institutional expertise to track, monitor and block the sources of the resulting tax base erosion. In recent years, Government of Ghana has already put in some measures to monitor illicit operations. Such measures include the setting up of a transfer pricing unit and anti-money laundering unit within the revenue authority. Other measures include designating a national assayer (PMMC) to assay all gold to be exported and agreeing with neighbouring countries, especially Cote d’Ivoire, to announce the producer price of cocoa at the same time in a bid to curb smuggling of cocoa beans between the two countries.

Further policy recommendations include the need to improve data collection capacity of the various institutions engaged in the export of these commodities, greater co-operation among the various institutions in these sectors to reconcile data collected and constant skills improvement of personnel of these units. Information and communication technology tools, especially computers, relevant software and access to critical databases also need be upgraded to match those of the private sector actors in order to ease tax assessments and payments tracking. Regulators may also consider using our research methods based on commodity exchange prices and statistical benchmarks as a means for risk-based selection of cases for customs, tax and transfer pricing audits.
REFERENCES
Acheampong M. (2019, April 6) Personal Interview
Cocoa Marketing Company (2019, June 3) Personal Interview
Cocobod Personnel (2019, June 3) Personal Interview
Cocobod Personnel. (2019 April 6), Stakeholder Meeting

CSSM (2009), Mining Together: Large-Scale Mining meets Artisanal Mining, Communities and Small-Scale Mining, World Bank, Washington, D.C.

Kwao E. (2019, June 6) Personal Interview

Mate-Kodjo, F. (2019, May 21) Personal Interview

Metal Focus Doré Flow Services Database, 2019, Metal Focus Minerals and Mining General Regulation 2012 (LI 2173).

Nyarko C. (2019, October 17) Personal interview

Organisation for Economic Co-operation and Development. (2017), OECD Transfer Pricing
http://dx.doi.org/10.1787/tpg-2017-en

Opare-Hammond K. (2018, December 5) Personal Interview
Oppong, N. Y. (2013). The Good and the Bad of Structural Adjustment Programme in Africa:
Evidence from Ghanaian Gold Mining Industry. International Journal of Business and Behavioral
Science, 3(10), 27-41.
Trade: The Greece-USA case. Interfaces, 33(2), 54-64.
on Globalisation and Economic Restructuring in Africa, no. xii; Centre for Development Research
of Global Cocoa Economy. IntechOpen.
Comparables Data for Transfer Pricing Analyses’. International Monetary Fund (IMF),
Incentives for Cocoa Bean Production in Ghana: Does Quality Matter? NJAS – Wageningen
Governance Institute.
of Oil and Gas Project Costs to Maximize Revenue Collection.
Sarpong G. (2019, February 4). Ghana lost GHC2bn through collusion of Customs Officers and transit
traders in 2018. IWatchAfrica. Retrieved from: http://iwatchafrica.org/2019/02/04/ghana-
Tawiah, A. (2018, March 5) Personal interview

